A NEW PYRROLIZIDINE ALKALOID FROM CACCINIA GLAUCA

MUSHTAQ A. SIDDIQI, KRISHAN A. SURI, OM P. SURI and CHAND K. ATAL Regional Research Laboratory (C.S.I.R.), Jammu-Tawi, India

(Revised received 18 April 1978)

Key Word Index—Caccinia glauca; Boraginaceae; flowers; pyrrolizidine alkaloids; retronecine-7:9-dibenzoate; retronecanol; benzoic acid.

Abstract—An alkaloid CG-I, isolated from flowers of Caccinia glauca Savi (Gule-Gaozaban) has been shown by spectroscopy and chemical evidence to be a diester of retronecine and benzoic acid.

INTRODUCTION

Caccinia glauca Savi, a plant with violet flowers grows in Baluchistan and is used in medicine [1]. Earlier workers have reported the isolation of a glycoside [2] and a triterpenoid saponin [3] from the plant. However, our investigations on the alkaloids from the flowers of this species has shown the presence of a new aromatic ester of retronecine.

RESULTS AND DISCUSSION

The PMR spectrum of CG-I, exhibits the characteristic signals of a pyrrolizidine nucleus [4] at δ 2.3 (m, C-6), 2.7 (m, C-5), 3.45 (m, C-3), 5.02 (bs, C-9) and 6.05 (bs, C-2). A multiplet centred at δ 7.5 integrated for 6 protons and two double doublets centred at δ 8.05 (J=7 Hz, ortho coupling and J=3 Hz, meta coupling) integrated for 4 protons, in the vicinity of carbonyl functions, accounted for the aromatic protons. D₂O exchange showed the absence of any exchangeable protons.

The MS of CG-I showed characteristic peaks at m/e 93, 94, 119 and 136 showing it to be an ester of a retronecine type aminoalcohol [5]. The M⁺ at m/e 363 assigned it a molecular formula of $C_{22}H_{21}NO_4$. Another significant peak at m/e 242 was assigned to the ion obtained after loss of a benzoate group attached to allylic carbon atom (Scheme 1).

Scheme 1

$$C_6H_5OCO$$
 $CH_2OCOC_6H_5$ C_6H_5OCO CH_2
 C_6H_5COO
 N
 $M/e 363 (2\%)$
 $M/e 242 (63\%)$

The alkaloid on hydrogenation (Adams catalyst) gave an acid and a necine. The acid was identified as benzoic acid by direct comparison with authentic sample, mmp, IR and co-TLC. The PMR of the necine part showed a doublet at δ 0.92 (d, J=7 Hz, CH₃-CH), in addition to characteristic signals for aromatic protons integrating for 5 protons. The necine was identified as 7-O-benzoyl retronecanol by comparison with the 7-ester obtained by benzoylation of retronecanol. Hydrolysis of the 7-ester by NaOH (2N in MeOH) gave retronecanol

Scheme 2

(mp 95°) and benzoic acid (mp 122°) identified by mmp, co-TLC and IR.

Final proof as to the structure of the alkaloid was provided by its unequivocal synthesis from retronecine (Scheme 2).

EXPERIMENTAL

Mps are uncorr. PMR spectra were recorded in CDCl_3 using TMS as internal reference.

Extraction of alkaloids from the flowers of C. glauca. Powdered flowers (3 kg) containing 0.04% tertiary bases were extracted with EtOH. The extract on further processing [6] yielded the total alkaloids.

Separation. Total alkaloids on TLC (CHCl₃-MeOH, 17:3) showed one major spot R_f 0.83. The alkaloid was obtained in pure form by CC over neutral Al₂O₃ (grade-I BDH). Attempts to crystallize the alkaloid proved futile but its picrate was crystallized from EtOH:mp 136–137°. (Found:C, 58.20;H,4.10;N,9.40; C₂₈H₂₄N₄O₁₀ requires: C, 58.33; H, 4.11; N, 9.72 %) $v_{\rm max}^{\rm film}$ cm⁻¹: 1750 (ester CO) and 1725 (aryl CO).

Hydrogenation. The base (300 mg) was hydrogenated in EtOH (Raney Ni). 2 moles of $\rm H_2$ were absorbed in 2 hr. Work up of the reaction mixture afforded necic acid (80 mg) and the 7-ester (150 mg). The necic acid on TLC ($\rm C_6H_6$ -MeOH-HOAc, 20:4:3) showed a single spot, R_f 0.57, which corresponded to benzoic acid. Crystallization of the acid from hot $\rm H_2O$ afforded shining needles mp, mmp 122°. The 7-ester was crystallized as its picrate (EtOH) mp 222-224°, (Found: C, 54.9; H, 4.7; N, 12.1; $\rm C_{21}H_{22}N_4O_8$ requires: C, 55.02; H, 4.8; N, 12.2%). Benzoylation of retronecanol. Retronecanol (100 mg) was

Benzoylation of retronecanol. Retronecanol (100 mg) was heated at 100° for 2 hr when TLC showed completion of the reaction. Work up of the reaction mixture afforded a crude alkaloid which was purified by CC over neutral Al₂O₃. Pure alkaloid was neutralized with ethanolic pieric acid and crystallized, mp 222–223° undepressed on admixture with the 7-ester pierate obtained by hydrogenation of CG-I.

Hydrolysis of the 7-ester. The compound (120 mg) was dissolved in 2 N methanolic NaOH (6 ml) at room temp., the reaction was complete after 3 hr. MeOH was removed under red. pres. and the residue taken in dil. HCl and filtered. The filtrate on extraction with $\rm Et_2O$ afforded a necic acid, mp 122° (hot $\rm H_2O$). The aq. part was basified with NH₄OH and extrac-

2050 Short Reports

tion with Et₂O afforded retronecanol (Et₂O-petrol) mp, mmp 93-94°.

Acid hydrolysis of alkaloid. The base (100 mg) was heated with 12% HCl (6 ml) at 100° for 12 hr. Usual work up of the reaction mixture gave necic acid, mp 122°, mmp with benzoic acid undepressed. Necine-HCl separated by evapn of the aq. extract in a vacuum desiccator was identified as retronecine HCl by mmp (163°), co-TIC and IR.

Synthesis of alkaloid CG-I. Retronecine (200 mg) was heated with benzoyl chloride (2.1 mol) at 100° for 2 hr under anhydrous conditions. The reaction mixture was cooled and taken up in 5% aq. HCl. The acid extract was extracted with Et₂O to remove excess benzoic acid. The aq. layer was basified with NH₄OH and extracted with Et₂O. The Et₂O extract on concn afforded a crude alkaloid which was purified by chromatography over neutral Al₂O₃. The alkaloid was identical to CG-I by co-TLC. IR, NMR and mmp of picrates, 136°.

Acknowledgements—The authors wish to express their sincere thanks to Dr. S. M. Qadri, Principal Hamdard College of Pharmacy, Delhi for procurement of the material.

REFERENCES

- 1. Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) in Glossary of Indian Medicinal Plants, p. 43.
- 2. Arora, H. R. K. and Arora, R. B. (1962) J. Pharm. Sci. 51, 1040.
- 3. Jain, A. P. and Arora, R. B. (1974) Indian J. Pharm. 36, 166.
- Culvenor, C. C. J. and Woods, W. G. (1965) Aust. J. Chem. 18, 1625.
- Neuner-Jehle, N., Nesvadba, H. and Spitteller, G. (1965) Monatsh. 96, 321.
- Sawhney, R. S. and Atal, C. K. (1968) J. Indian Chem. Soc. 45, 1052.